Institution name and department

University of Chemistry and Technology in Prague, Dept. of Organic Chemistry

Position held


Assistan Professor



Technická 5, 16628 Praha, Czech Republic



This email address is being protected from spambots. You need JavaScript enabled to view it.


Key words


Computational chemistry

Physical chemistry


Organic chemistry






Areas of Research/Expertise

Computational chemistry with specialization on covalent mechanochemistry, including force-dependent spectroscopy and reactivity. Research focused on mechanochromic indicators, i.e. molecules, which do change spectral properties when subjected to mechanical force. The proposed molecules are synthesized and spectroscopically analyzed. For application of force, incorporation in to polymers is necessary, either soluble or elastomeric.


5 Most representative publications related to mechanochemistry 

(1) Wollenhaupt, M.; Schran, C.; Krupička, M.; Marx, D. Force-Induced Catastrophes on Energy Landscapes: Mechanochemical Manipulation of Downhill and Uphill Bifurcations Explains the Ring-Opening Selectivity of Cyclopropanes. ChemPhysChem 2018, 19 (7), 837–847.

(2) Dopieralski, P.; Ribas-Arino, J.; Anjukandi, P.; Krupicka, M.; Marx, D. Force-Induced Reversal of β-Eliminations: Stressed Disulfide Bonds in Alkaline Solution. Angew. Chem. 2016, 128 (4), 1326–1330.

(3) Krupička, M.; Marx, D. Disfavoring Mechanochemical Reactions by Stress-Induced Steric Hindrance. J. Chem. Theory Comput. 2015, 11 (3), 841–846.

(4) Krupička, M.; Sander, W.; Marx, D. Mechanical Manipulation of Chemical Reactions: Reactivity Switching of Bergman Cyclizations. J. Phys. Chem. Lett. 2014, 5 (5), 905–909.

(5) Dopieralski, P.; Ribas-Arino, J.; Anjukandi, P.; Krupicka, M.; Kiss, J.; Marx, D. The Janus-Faced Role of External Forces in Mechanochemical Disulfide Bond Cleavage. Nat Chem 2013, 5 (8), 685–691.

5 Most representative publications non-related to Mechanochemistry

(1) Slavík, P.; Krupička, M.; Eigner, V.; Vrzal, L.; Dvořáková, H.; Lhoták, P. Rearrangement of Meta-Bridged Calix[4]Arenes Promoted by Internal Strain. J. Org. Chem. 2019, 84 (7), 4229–4235.

(2) Pokluda, A.; Kohout, M.; Chudoba, J.; Krupička, M.; Cibulka, R. Nitrosobenzene: Reagent for the Mitsunobu Esterification Reaction. ACS Omega 2019, 4 (3), 5012–5018.

(3) Krupička, M.; Sivalingam, K.; Huntington, L.; Auer, A. A.; Neese, F. A Toolchain for the Automatic Generation of Computer Codes for Correlated Wavefunction Calculations. J. Comput. Chem. 2017, 38 (21), 1853–1868.

(4) Sivalingam, K.; Krupicka, M.; Auer, A. A.; Neese, F. Comparison of Fully Internally and Strongly Contracted Multireference Configuration Interaction Procedures. The Journal of Chemical Physics 2016, 145 (5), 054104.

(5) Krupička, M.; Tvaroška, I. Hybrid Quantum Mechanical/Molecular Mechanical Investigation of the β-1,4-Galactosyltransferase-I Mechanism. J. Phys. Chem. B 2009, 113 (32), 11314–11319.

Orcid ID/ Google Scholar/ Researchgate/ Scopus profiles

Orcid ID


Google Scholar


Scopus profiles

Twitter/ Linkedin/ Instagram accounts




Instagram accounts




Contact Info

  • Université de Montpellier & Institut Charles Gerhardt de Montpellier (UMR 5253)
    c/o 8, Rue de l’Ecole Normale
    34296 Montpellier, Cedex 5 (France)

  • +33 (0)4 67 14 43 10
  • This email address is being protected from spambots. You need JavaScript enabled to view it.

COST Overview


EU COST is supported by the EU Framework Programme Horizon 2020.



COST Action CA18112